254 research outputs found

    Prosocial nudges and visual indicators increase social distancing, but authoritative nudges do not.

    Get PDF
    Social distancing reduces the transmission of COVID-19 and other airborne diseases. To test different ways to increase social distancing, we conducted a field experiment at a major US airport using a system that presented color-coded visual indicators on crowdedness. We complemented those visual indicators with nudges commonly used to increase COVID-19-preventive behaviors. Analyzing data from 57,146 travelers, we find that visual indicators and nudges significantly affected social distancing. Introducing visual indicators increased the share of travelers practicing social distancing, and this positive effect was enhanced by introducing nudges focused on personal benefits ("protect yourself") and public benefits ("protect others"). Conversely, an authoritative nudge referencing the Centers for Disease Control and Prevention ("don't break CDC COVID-19 guidelines") did not change social distancing behavior. Our results demonstrate that visual indicators and informed nudges can boost social distancing and potentially curb the spread of contagious diseases

    Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations

    Full text link
    The total energies and the spin states for atoms and their first ions with Z = 1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable, are treated as ensemble v- representable with fractional occupations of the Kohn-Sham system. A newly developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab-initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g. in lanthanides. The spin values calculated ab-initio fit the experiment for most atoms and are almost unaffected by the choice of the xc-functional. Among the systems with incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the result is found to be stable with respect to small variations in the xc-approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a non-local nature, to accurately describe such systems. PACS numbers: 31.15.

    Density functional theory study of (OCS)2^-

    Full text link
    The structural and electronic properties of the carbonyl sulfide dimer anion are calculated using density functional theory within a pseudopotential method. Three geometries are optimized and investigated: C2v and C2 symmetric, as well as one asymmetric structure. A distribution of an excess charge in three isomers are studied by the Hirshfeld method. In an asymmetric (OCS)2^- isomer the charge is not equally divided between the two moieties, but it is distributed as OCS^{-0.6} OCS^{-0.4}. Low-lying excitation levels of three isomers are compared using the time-dependent density functional theory in the Casida approach.Comment: pdf (included all figures): http://www.phy.hr/~goranka/Research/ocs.pd

    Supercell technique for total-energy calculations of finite charged and polar systems

    Get PDF
    We study the behavior of total-energy supercell calculations for dipolar molecules and charged clusters. Using a cutoff Coulomb interaction within the framework of a plane-wave basis set formalism, with all other aspects of the method (pseudopotentials, basis set, exchange-correlation functional) unchanged, we are able to assess directly the interaction effects present in the supercell technique. We find that the supercell method gives structures and energies in almost total agreement with the results of calculations for finite systems, even for molecules with large dipole moments. We also show that the performance of finite-grid calculations can be improved by allowing a degree of aliasing in the Hartree energy, and by using a reciprocal space definition of the cutoff Coulomb interaction

    Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study

    Full text link
    We present ab initio local-density-functional electronic structure calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically stable reconstructions, namely the N adatom, N3 triangle models on the (111), the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are investigated. Band structure and properties of the surface states are discussed in detail.Comment: 8 pages, 12 figure

    Is manganese-doped diamond a ferromagnetic semiconductor?

    Full text link
    We use density-functional theoretical methods to examine the recent prediction, based on a mean-field solution of the Zener model, that diamond doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that remains ferromagnetic well above room temperature. Our findings suggest this to be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin S=1/2 ground state; (2) the substitutional site is energetically unfavorable relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an acceptor, but with only hyperdeep levels, and hence the holes are likely to remain localized; (4) the calculated Heisenberg couplings between Mn in nearby divacancy sites are two orders of magnitude smaller than for substitutional Mn in germanium.Comment: 5 pages, 5 figure

    Proof of the thermodynamical stability of the E' center in SiO2

    Full text link
    The E' center is a paradigmatic radiation-induced defect in SiO2 whose peculiar EPR and hyperfine activity has been known since over 40 years. This center has been traditionally identified with a distorted, positively-charged oxygen vacancy V_O+. However, no direct proof of the stability of this defect has ever been provided, so that its identification is still strongly incomplete. Here we prove directly that distorted V_O+ is metastable and that it satisfies the key requirements for its identification as E', such as thermal and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure

    Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes

    Full text link
    While most calculations on the properties of the ferromagnetic semiconductor GaAs:Mn have focussed on isolated Mn substituting the Ga site (MnGa_{Ga}), we investigate here whether alternate lattice sites are favored and what the magnetic consequences of this might be. Under As-rich (Ga-poor) conditions prevalent at growth, we find that the formation energies are lower for MnGa_{Ga} over interstitial Mn (Mni_i).As the Fermi energy is shifted towards the valence band maximum via external pp-doping, the formation energy of Mni_i is reduced relative to MnGa_{Ga}. Furthermore, under epitaxial growth conditions, the solubility of both substitutional and interstitial Mn are strongly enhanced over what is possible under bulk growth conditions. The high concentration of Mn attained under epitaxial growth of p-type material opens the possibility of Mn atoms forming small clusters. We consider various types of clusters, including the Coulomb-stabilized clusters involving two MnGa_{Ga} and one Mni_i. While isolated Mni_i are hole killers (donors), and therefore destroy ferromagnetism,complexes such as MnGa_{Ga}-Mni_i-MnGa_{Ga}) are found to be more stable than complexes involving MnGa_{Ga}-MnGa_{Ga}-MnGa_{Ga}. The former complexes exhibit partial or total quenching of holes, yet Mni_i in these complexes provide a channel for a ferromagnetic arrangement of the spins on the two MnGa_{Ga} within the complex. This suggests that ferromagnetism in Mn doped GaAs arises both from holes due to isolated MnGa_{Ga} as well as from strongly Coulomb stabilized MnGa_{Ga}-Mni_i-MnGa_{Ga} clusters.Comment: 7 figure

    Prosocial nudges and visual indicators increase social distancing, but authoritative nudges do not

    Get PDF
    Social distancing reduces the transmission of COVID-19 and other airborne diseases. To test different ways to increase social distancing, we conducted a field experiment at a major US airport using a system that presented color-coded visual indicators on crowdedness. We complemented those visual indicators with nudges commonly used to increase COVID-19–preventive behaviors. Analyzing data from 57,146 travelers, we find that visual indicators and nudges significantly affected social distancing. Introducing visual indicators increased the share of travelers practicing social distancing, and this positive effect was enhanced by introducing nudges focused on personal benefits (“protect yourself”) and public benefits (“protect others”). Conversely, an authoritative nudge referencing the Centers for Disease Control and Prevention (“don’t break CDC COVID-19 guidelines”) did not change social distancing behavior. Our results demonstrate that visual indicators and informed nudges can boost social distancing and potentially curb the spread of contagious diseases
    • …
    corecore